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Abstract. Using the functional integral bosonization technique, the spinless Tomonaga–
Luttinger model with impurity forward scattering is solved exactly. Explicit analytical results
are given for the one- and two-particle spectral functions in terms of a convolution integral
representation. Sharp structures in the frequency spectra of an ordered system are smoothed out
by the disorder. The existence of a charge–density instability is predicted if the critical exponent
γCDW is less than−0.5. There is no influence of the disorder on the superconducting spectral
functionχSC.

1. Introduction

The optical and transport properties of quasi-one-dimensional (1D) systems, which
are realized in organic conductors and quantum wires with an effective geometrical
dimensionality of one, have recently occupied a great deal of attention. A pure1D interacting
electronic system is necessarily described by the Tomonaga–Luttinger (TL) model [1, 2],
which exhibits non-Fermi-liquid behaviour so that its Green functions do not have quasi-
particle poles but branch cuts instead. Applying the elegant boson representation of the
fermion field operators, exact results were derived for given sets of coupling constants.
Details of the large volume of work in this field can be found in the review articles
[3, 4]. Recently, the exactly calculated Green functions of theTL model have been used
to investigate the transport properties [5] and the Raman scattering [6] for1D interacting
electron systems. Comparing these theoretical results with experiments one has to realize
that up to now it has not been clear whether finite-size effects in actual semiconductor
quantum wires mask the low-energy physics of theTL model and restore the Fermi liquid
behaviour of the electron gas.

It is expected that below a given crossover temperature impurity effects play an important
role and give rise to1D Anderson localization [5]. From a theoretical point of view it is an
interesting task to study the interplay between electron–electron interactions and disorder
because the interaction turns out to be relevant for the nature of the metal–insulator phase
transition [7]. It has been stressed that near the transition neither the disorder nor the
interaction between electrons is small so that simple models developed for disordered non-
interacting electrons are not sufficient to understand all experimental data [7]. Results
obtained for the disorderedTL model could therefore shed some light on the difficult problem
to consider disorder and interaction simultaneously. Giamarchi and Schulz [8] studied the
interplay between disorder and electron–electron interaction on the basis of a perturbative
renormalization-group (RG) approach by treating both impurity mediated forward and
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backward scattering. Whereas the electron-impurity forward scattering turns out to be of
secondary importance, the backward scattering due to the random potential plays a crucial
role in the localization process. If the electron–electron interaction strength is sufficiently
attractive, a localization–delocalization transition is predicted [9, 8]. Theoretical results
have been derived from the first-orderRG flow equations [8]. The adequate description of
the localized region requires, however, the consideration of higher-order renormalization
equations, too.

The main objective of the present paper is to show that the functional integral
bosonization technique worked out in [10, 11] provides an elegant mathematical tool to
investigate disorder effects in1D interacting systems. To show this we put emphasis on exact
results, which can be derived by neglecting the impurity mediated backward scattering. Thus
we focus our attention on the mathematical structure of the approach by disregarding the
interesting physical processes associated with impurity backward scattering. The functional-
integral bosonization method has also been applied successfully to a treatment of electron–
phonon forward scattering in the spinlessTL model [11, 12]. A second aim of our paper
is to present new analytical and numerical results for the one- and two-particle spectral
functions.

In the TL model there are two branches of fermion fieldsψ1(x) (ψ2(x)) describing
electrons moving in the positive (negative)x direction with velocityvF so that the free-
electron dispersion relation is linearized around the Fermi energy. The Hamiltonian is given
by

H =
L∫

0

dx ψ̄(x)
[−vF(iσ3∂x + pF)+ u(x)

]
ψ(x)

+
L∫

0

dx dy
∑
i,j=1,2

ψ̄i(x)ψi(x)Vij (x − y)ψ̄j (y)ψj (y) (1)

where ψ(x) and ψ̄(x) are independent two-component Grassmann variables andVij
(i, j = 1, 2) are the elements of the coupling matrix

V̂ =
(
V1 V2

V2 V1

)
. (2)

Backscattering and umklapp processes with large momentum transfer have been
neglected. The random potentialu(x) is Gaussian distributed with a white noise pair
correlation function

〈u(x)u(x ′)〉u = u0δ(x − x ′) (3)

where〈· · ·〉u means the average over the Gaussian random potential. Exact results for the
one- and two-particle spectral functions of this disordered spinlessTL model are derived
and discussed in sections 2 and 3.

2. One-particle spectral function

The imaginary-time action of the Hamiltonian (1) is given by

S
[
ψ̄, ψ

] =
β∫

0

dτ

L∫
0

dx ψ̄(xτ)∂τψ(xτ)+
β∫

0

dτ H(τ) (4)
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whereH(τ) is the Hamiltonian in the Heisenberg picture andβ = 1/kBT . The one-
particle Green’s function of the disordered system is expressed by a functional integral over
Grassmann fields

Gi (xτ, x ′τ ′) =
〈∫

Dψ̄ Dψ ψ̄i(xτ)ψi(x
′τ ′)e−S[ψ̄,ψ]

[∫
Dψ̄ Dψ e−S[ψ̄,ψ]

]−1〉
u

. (5)

Using the Hubbard–Stratanovich transformation the four-fermion term in (5) is expressed
by a functional integral over real commuting fieldsφi so that the fermionic part can be
integrated out, which provides, in both the numerator and denominator of the expression
in (5), a product of Matthews–Salam determinants. For theTL model these determinants
can be calculated exactly [10] and the Green’s function may be represented in terms of a
functional integral over Bose fields

Gi (xτ ) = 〈Gi(xτ, 00; [u+ iφ])〉u,φ . (6)

The average over theφ field is defined by

〈· · ·〉φ =
∫ ∏

i=1,2

Dφi . . .exp(−Seff [u, φi ])

[∫ ∏
i=1,2

Dφi exp(−Seff [u, φi ])

]−1

(7)

where the following effective action had been introduced:

Seff [u, φi ] = − 1

βL

∑
pωn

∑
i

ai(p, ωn)
[
iβδn0u(p)(φi(p, ωn)+ φi(−p,−ωn))

]
+ 1

βL

∑
pωn

(φ1 φ2)−p,−ωn�0(p, ωn)

(
φ1

φ2

)
pωn

. (8)

u(p) is the Fourier transform of the random potentialu(x) and the matrix�0 is given
by

�0(p, ωn) = 1

V 2
1 − V 2

2

(
a1(V

2
1 − V 2

2 )+ V1 −V2

−V2 a2(V
2

1 − V 2
2 )+ V1

)
(9)

with

ai(p, ωn) = ∓ 1

4π

p

iωn ∓ vFp
. (10)

Furthermore, the field-dependent Green’s functionGi in (6) can be written as [10]

Gi(xτ, 00; [u+ iφ]) = G
(0)
i (xτ ) exp

[
1

βL

∑
pωn

χi(p, ωn)Ji(−p,−ωn|xτ ; 00)

]
(11)

where

Ji(−p,−ωn|xτ ; 00) = 1

iωn ∓ vFp

(
ei(px−ωnτ) − 1

)
(12)

and

χi(p, ωn) = βδn,0u(p)+ iφi(p, ωn) . (13)

G
(0)
i (xτ ) is the Green’s function of free electrons without any disorder (u = 0). The

average over the random potentialu is complicated by the fact that it appears in both the
nominator and denominator in (6) via the average over theφ field. It is therefore expedient
to introduce additional artificial degrees of freedom, which are removed at the end of the
calculation but which allow us to handle the random field dependence resulting from the
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denominator. Applying this so-called replica trick the configuration average can be carried
through exactly. The replica representation of (6) has the following form:

G1(xτ) = G
(0)
1 (xτ) lim

N→0

∫ N∏
l=1

Dϕl
〈

exp

(
1

L

∑
p

u(p)F (−p)
)〉

u

× exp

{
− 1

βL

∑
pωn

N∑
l=1

ϕlT (−p,−ωn)�0(p, ωn)ϕ
l(p, ωn)

+ i

βL

∑
pωn

φ1(p, ωn)J1(−p,−ωn|xτ ; 00)

}
(14)

where

F(−p) = J1(−p, 0|xτ ; 00)− 2i
∑
l

(
a1(p, 0)ϕl1(p, 0)+ a2(p, 0)ϕl2(p, 0)

)
. (15)

HereϕlT = (φl1, φ
l
2)(l = 1, . . . N) are real two-component fields. Using (equation (3))

the Gaussian average over the random potentialu is easily performed〈
exp

(
1

L

∑
p

u(p)F (−p)
)〉

u

= exp

[
u0

2

1

L

∑
p

F (p)F (−p)
]

(16)

and one arrives at a representation of the Green’s function (6) in terms of a quadratic form in
the Bose fieldsϕl . Consequently, the functional integral over these fields is straightforwardly
calculated and the one-particle Green’s function is expressed by

G1(xτ) = G
(0)
1 (xτ) exp

(
− u0

2v2
F

|x|
)

× lim
N→0

exp

[
1

4βL

∑
pωn

jT (−p,−ωn)�−1(p, ωn)j (p, ωn)

]
(17)

wherej is a vector with 2N components

j l(−p,−ωn) = iJ1(−p,−ωn|xτ ; 00)

[
δl,1

(
1
0

)
− u0βδn,0

2πvF

(
1
1

)]
. (18)

� is a special 2N × 2N block Toeplitz matrix, its diagonal and off-diagonal parts are
given by�0 +�1 and�1, respectively, where�1 is the following 2× 2 matrix

�1 = βδn,0
u0

8π2v2
F

(
1 1
1 1

)
. (19)

From the calculated inverse matrix�−1 the replica limit is easily read off and it remains
only elementary but tedious to integrate overp andω. Finally, a Wick rotation gives the
following exact analytic form of the zero-temperature one-particle Green’s function:

G1(xt) = eipFx−α|x|

2π i

{
2(t)

x − vFt + i3

(x − vFt + iε)(x − vt + i3)

×
[

32

(x − vt + i3)(x + vt − i3)

]γ
+2(−t) [CC]

}
(20)

with the renormalized Fermi velocity

v =
√(

vF + V1

4π

)2

−
(
V2

4π

)2

(21)
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and the exponents

α = u0

2v2
F

(
1 + 1

1 + 4πvF/(V1 − V2)

)2

(22)

γ = 1

2

((
vF + V1

4π

)
/v − 1

)
. (23)

As usual a momentum cut-off parameter3 has been introduced, which sets the scale for
the crossover from free-fermion behaviour to the Luttinger liquid. Employing the frequently
used approximationvF → v in (20) this expression simplifies further:

G1(xt) = eipFx−α|x|

2π i

(
2(t)

x − vt + iε

[
32

(x − vt + i3)(x + vt − i3)

]γ
+2(−t)CC

)
. (24)

A shortcoming of this representation, which agrees with known results [13] for an
ordered system (α = 0), is an inadequate description of the high-energy properties of the
model [14]. However, it is a suitable form to characterize the behaviour at low frequencies,
in which we are mainly interested in. The random potential gives rise to an exponential
decay of the correlation functions described by the characteristic exponentα, which also
depends also on the parametersV1,2 of the Coulomb interaction.

Analytical results for the spectral function are obtained by a double Fourier
transformation of the Green’s function (24). Introducing new variables (s = x + vt and
s ′ = x − vt) the integrals are easily calculated (see e.g. [14]) and the spectral function
A1(q, ω) may be expressed by the following convolution integral:

A1(q, ω) = 1

π

∞∫
−∞

dq ′ α

α2 + (q ′ − (q − pF))2
A
(0)
1 (q

′, ω) (25)

whereA(0)1 (q, ω) is the spectral function of the ordered system withu = 0:

A
(0)
1 (q, ω) = 3

v0(γ )2
e−3|ω−vq|/2v

(
3

2v
|ω − vq|

)γ−1

γ

(
γ,
3

2v
|ω + vq|

)
2(ω2 − v2q2) .

(26)

Taking into account the properties of the incomplete gamma functionγ (a, x) it is seen
that bothA1 andA(0)1 satisfy the sum rule

∞∫
−∞

dω

2π
A1(q, ω) = 1 . (27)

As according to (23) the exponentγ is always positive or zero the algebraic singularity
in A(0)1 atω = vq is smoothed out by the random potential. This suppression of divergencies
is a characteristic effect of forward scattering by impurities, which could be modified
by electron–electron umklapp scattering in a non-trivial manner [8]. An example of this
suppression is shown in figure 1, where the spectral function of the ordered systemA

(0)
1

(thin curve) is compared withA1(q, ω) calculated from (25) (thick full curve) forγ = 0.5
and the dimensionless disorder parameterα3 = 0.2. The main disorder effect is to weaken
the steep frequency dependence of the spectral function at the edgesω = ±vq. Both
spectra do not exhibit any quasi-particle-likeδ-peak structure, which could be identified by
a quasi-particle as in the Fermi liquid theory.



2394 P Kleinert

Figure 1. Frequency dependence of the one-particle spectral function (25) for the dimensionless
disorder parameterα3 = 0.2 andγ = 0.5 (thick curve) compared with the spectral function
A
(0)
1 (equation (26)) of an ordered system (thin curve). In addition it is3(q − pF) = 1.

3. Two-particle spectral function

A strictly one-dimensional system cannot have a phase transition at finite temperature to
a long-range ordered charge–density wave (CDW) or superconducting (SC) state. However,
divergences in the corresponding two-particle spectral functions are a sign that a coupled
many-chain system may undergo a transition to aCDW or SC state. Therefore, it is
interesting to examine the zero-temperature susceptibilities of the system for any indication
of instabilities. TheCDW andSC two-particle spectral functions are defined by the following
equations:

χ>CDW(xτ) = 〈Tτψ1(xτ)ψ̄2(xτ)ψ2(00)ψ̄1(00)〉 (28)

χ>SC(xτ) = 〈Tτψ2(xτ)ψ1(xτ)ψ̄1(00)ψ̄2(00)〉 . (29)

First theCDW susceptibility is considered. Following the same steps as in section 2 it
is straightforward to derive the replica representation of the two-particle spectral function.
As in section 2 the configuration average is carried out and one arrives at

χ>CDW(xτ) = G
(0)
1 (xτ)G

(0)
2 (−x − τ) lim

N→0

∫
Dϕ exp

{
− 1

βL

∑
pωn

ϕT (−p,−ωn)

×�(p,ωn)ϕ(p, ωn)+ 1

βL

∑
pωn

jT (−p,−ωn)ϕ(p, ωn)
}

(30)

where contrary to (18) the 2N components of the vectorj are now given by

j l(−p,−ωn) = iδl,1

(
J1(−p,−ωn|xτ ; 00)

(
1
0

)
+ J2(−p,−ωn|xτ ; 00)

(
0
1

))
+ iu0βδn,0

2πv2
F

1

p

(
eipx − e−ipx

) (
1
1

)
. (31)
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As the exponent in (30) is a quadratic form in the 2N -dimensional vectorϕ the functional
integral can be calculated exactly. The remainingp,ω integrals are elementary and after a
Wick rotation the following compact expression for theCDW spectral function is obtained

χ>CDW(xt) = 1

(2π)2
e2ipFx−2α|x|

(x − vt + iε)(x + vt − iε)

[
32

(x − vt + i3)(x + vt − i3)

]γCDW

. (32)

Again there is only a disorder-mediated exponential decay of the spectral function [8]
characterized by the exponent 2α. The critical exponent is determined by

γCDW = λCDW − 1 λCDW =
√

4πvF + V1 − V2

4πvF + V1 + V2
(33)

and is independent of the disorder. The instabilities of theCDW susceptibility are considered
in the Fourier representation, which also has the form of a convolution integral

χCDW(q, ω) = 1

π

∞∫
−∞

dq ′ 2α

(2α)2 + (q ′ − (q − 2pF))2
χ
(0)
CDW(q

′, ω) (34)

whereχ(0)CDW is the spectral function of an ordered system (u = 0)

χ
(0)
CDW(q, ω) = sgn(ω)e−3|ω−vq|/2v

2v0(γCDW)2
γ

(
γCDW,

3

2v
|ω − vq|

)
×γ

(
γCDW,

3

2v
|ω + vq|

)
2(ω2 − v2q2) . (35)

In the case of small arguments (3|ω ± vq|/2v � 1) the incomplete gamma function
may be expended so that we obtain

χCDW(q, ω) ∼= sgn(ω)α3e−3|ω|/v

2πv0(γCDW + 1)2

(
3ω

2v

)2γCDW+1
1∫

−1

dz
(1 − z2)γCDWe−3ω(1−z)/2v

(α3)2 + (
3ω
2v z − 3

2 (q − 2pF)
)2 .

(36)

Instabilities of the system are indicated by a divergence in the static susceptibility. Due
to the effect of the random potential a divergence, which may appear in the susceptibility
χ
(0)
CDW of an ordered reference system and which thus indicates the formation of aCDW state,

is completely smoothed out. Only if the exponentγCDW satisfies the conditionγCDW < −0.5
does the staticCDW susceptibility diverge independent of the disorder strength. This
behaviour is illustrated in figure 2 where theCDW spectral function is shown as a function
of the dimensionless frequency parameter3ω/2v for the disorder strengthα3 = 0.05
and the wave vector3(q − 2pF) = 1. As long asγCDW > −0.5 the spectral function
is finite for all frequencies. Only ifγCDW < −0.5 (an example is shown in the inset
of figure 2) does the spectral function diverge atω = 0 for all disorder strengths. This
transition is driven by a Coulomb interaction quite similar to the Mott–Hubbard transition.
Localization in disordered systems results, however, from impurity backward scattering,
which we neglected in the present paper.

Contrary to the disorder influence on the charge–density wave state there is no effect of
the impurity forward scattering on theSC susceptibility. The superconducting two-particle
spectral functions of an ordered system and a system with disorder scattering in the forward
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Figure 2. CDW spectral function (33) forα3 = 0.05 and3(q − 2pF) = 1 and with
γCDW = 0.2, −0.2 and −0.8 (inset), respectively. The band edge of the ordered system is
marked by the broken line.

direction completely agree and are given by

χSC(q, ω) = sgn(ω)e−3|ω−vq|/2v

2v0(γSC)2
γ

(
γSC,

3

2v
|ω − vq|

)
γ

(
γSC,

3

2v
|ω + vq|

)
2(ω2 − v2q2)

(37)

where theSC exponent is simplyγSC = 1/λCDW − 1. This observation that the pairing
fluctuations are not affected by the impurity forward scattering has already been stressed by
Giamarchi and Schulz [8] and is in line with the fact that there is only a very weak disorder
influence on theBCS superconductivity.

4. Summary

The method of functional integral bosonization in connection with the replica trick have
been used to derive exact results for the spinless Tomonaga–Luttinger model with impurity
forward scattering. It has been demonstrated that the functional integration provides an
elegant mathematical tool to treat disorder effects in1D systems so that it should be promising
to apply this technique to physically more interesting models, which include backward
scattering due to both electron–electron and electron-impurity scattering. The formalism has
been used to derive analytical and numerical results for the one- and two-particle spectral
functions. It has been shown that the effects of the impurity forward scattering on the spectral
functions are easily represented by a convolution integral expression. Sharp structures and
singularities in the frequency spectra are smoothed out by the random potential. Whereas
there is a direct influence of the impurity forward scattering on the formation of charge–
density wave states the superconducting spectral function remains unaffected by the random
potential. The disorder prevents the formation of aCDW instability unless the exponentγCDW

becomes smaller than−0.5. If γCDW < −0.5 the static susceptibility diverges indicating
the existence of an instability.
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We focused our attention on the case of small momentum transfer and neglected
the backward scattering and umklapp processes. However, just the neglected terms
mainly determine the physically interesting interplay between disorder and electron–electron
interaction. We hope that the presented functional integral bosonization technique in
connection with the replica trick can be applied successfully to an approximate treatment
of more complicated disordered1D Fermi systems with backward scattering.

References

[1] Tomonaga S 1950Prog. Theor. Phys.5 544
[2] Luttinger J M 1963J. Math. Phys.4 1154
[3] Emery V J 1979Highly Conducting One-Dimensional Solidsed J T Devreese, R P Evrard and V E van Doren

(New York: Plenum) p 247
[4] Solyom J 1979Adv. Phys.28 201
[5] Ogata M and Anderson P W 1993Phys. Rev. Lett.70 3087
[6] Zang J, Birman J L and Zhao-Bin Su 1995Solid State Commun.94 321
[7] Belitz D and Kirkpatrick T R 1994Rev. Mod. Phys.66 261
[8] Giamarchi T and Schulz H J 1988Phys. Rev.B 37 325
[9] Suzumura Y and Fukuyama H 1984J Phys. Soc. Japan53 3918

[10] Lee D K K andChen Y 1988J. Phys. A: Math. Gen.21 4155
[11] Chen Y, Lee K K, and Luchini M U 1988 Phys. Rev.B 38 8497
[12] Kleinert P 1989Phys. Stat. Sol.155 K99
[13] Luther A and Peschel I 1974Phys. Rev.B 9 2911
[14] Voit J 1993J. Phys.: Condens. Matter5 8305


